Query Selection via Weighted Entropy in Graph-Based Semi-supervised Classification
نویسندگان
چکیده
There has recently been a large effort in using unlabeled data in conjunction with labeled data in machine learning. Semi-supervised learning and active learning are two well-known techniques that exploit the unlabeled data in the learning process. In this work, the active learning is used to query a label for an unlabeled data on top of a semisupervised classifier. This work focuses on the query selection criterion. The proposed criterion selects the example for which the label change results in the largest pertubation of other examples’ label. Experimental results show the effectiveness of the proposed query selection criterion in comparison to existing techniques.
منابع مشابه
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic fun...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملOn Semi-Supervised Classification
A graph-based prior is proposed for parametric semi-supervised classification. The prior utilizes both labelled and unlabelled data; it also integrates features from multiple views of a given sample (e.g., multiple sensors), thus implementing a Bayesian form of co-training. An EM algorithm for training the classifier automatically adjusts the tradeoff between the contributions of: (a) the label...
متن کاملGraph Based Microscopic Images Semi and Unsupervised Classification and Segmentation
In this paper, we propose a general formulation of discrete functional regularization on weighted graphs. This framework can be used to on any multi-dimensional data living on graphs of arbitrary topologies. But, in this work, we focus on the microscopic image segmentation and classification with a semi and unsupervised schemes. Moreover, to provide a fast image segmentation we propose a graph ...
متن کامل